# A reinvestigation of the reaction of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{4-n}(\mathrm{CNR})_{n}\right](n=1$ or 2$)$ with strong alkylating agents 

Gary Cox, Conor Dowling, A.R. Manning<br>Department of Chemistry, University College, Belfield, Dublin 4 (Ireland)

Patrick McArdle and Desmond Cunningham
Department of Chemistry, University College, Galway (Ireland)
(Received March 18, 1992)


#### Abstract

The reaction of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{3}(\mathrm{CNR})\right]$ with $\mathrm{R}^{\prime} \mathrm{OSO}_{2} \mathrm{CF}_{3}\left(\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{Me}\right.$ or Et) gives a mixture of cis and trans- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left\{\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right\}\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$. When $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$ the isomer ratio is variable, but the cis always predominates and is the only product when $R \neq R^{\prime}$. The complexes $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNR})_{2}\right.$ ] react with $\mathrm{R}^{\prime} \mathrm{OSO}_{2} \mathrm{CF}_{3}$ and the more reactive alkyl halides $\mathrm{R}^{\prime} \mathrm{X}$ to give a mixture of cis-[Fe $\left.\left.\mathbf{F}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO}) \times \mathrm{CNR}\right)(\mu-\mathrm{CO})\left(\nu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right]\right] \mathrm{X}$ and $c i s-\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\{\mu-\right.$ $\left.\left.\mathbf{C N}\left(R^{\prime}\right) R\right\}_{2} I X\right]_{2}$. In both series of cations the presence of $\mu-\mathbf{C N}\left(R^{\prime}\right) R$ ligands give rise to isomers that differ in respect of orientation about the $\mathrm{C}=\mathrm{N}$ bond. The cations are not fluxional and do not undergo cis-trans interconversion, bridge-terminal ligand exchange, or rotation about the $\mu-C=N\left(R^{\prime}\right) R$ double bond. The structure of the cations in the $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{BPh}_{4}$ and $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2} I \mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ salts were confirmed as cis by X -ray diffraction studies. Their dimensions are similar to those previously found in cis-[Fe $\mathbf{F}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}(\mu-$ $\left.\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{I}$, but with variations due to the differing acceptor and donor abilities of the various ligands. Infrared and NMR spectra of the complexes are reported and discussed.


## Introduction

Previously it was reported that the reactions of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{3}(\mathrm{CNMe})\right]$, I, or $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right\}_{2}(\mathrm{CO})_{2}(\mathrm{CNMe})_{2}\right]$, II, with RI and RBr give $\left[\mathrm{Fe}_{2}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})(\mu-\mathrm{CN}(\mathrm{R}) \mathrm{Me})\right]^{+},[\mathrm{III}]^{+}$, and $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\right.$ $\mathbf{C O}\{\mu-\mathrm{CN}(\mathrm{R}) \mathrm{Me}\}]^{+},[\mathrm{IV}]^{+}$, salts. Spectroscopic data indicated that [III] ${ }^{+}$were cis isomers as was confirmed by an X-ray diffraction study of cis-[Fe $\mathbf{2}_{2}(\eta$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right]$. [IV] ${ }^{+}$could also exist as cis and trans

[^0]isomers, but the spectroscopic data could not distinguish between them, and crystals suitable for an X-ray diffraction study could not be obtained [1]. Similar studies were also carried out by others [2].

The reactions of I and II with more powerful alkylating agents such as [ $\left.\mathrm{Et}_{3} \mathrm{O}\right] \mathrm{BF}_{4}, \mathrm{MeSO}_{3} \mathrm{~F}, \mathrm{EtSO}_{3} \mathrm{~F}$ or $\left[\mathrm{Ph}_{3} \mathrm{C}\right] \mathrm{BF}_{4}$ did not give satisfactory results [1], but $\mathrm{MeOSO}_{2} \mathrm{CF}_{3}$ and $\mathrm{EtOSO}_{2} \mathrm{CF}_{3}$ have since become available. These cleanly and quickly alkylate I, II, their CNEt counterparts, and $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2^{-}}\right.$ $\left.(\mathrm{CO})_{2}(\mathrm{CNMe})_{2}\right]$. The trans isomer of [III] ${ }^{+}$has been obtained, and both isocyanide ligands of II have been alkylated. Furthermore, the molecular structures of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})\left(\mathrm{CNMe}^{2}\right)(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{BPh}_{4}$ and $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2^{-}}\right.$ $\left.(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ have been determined by X -ray crystallography and both cations shown to be cis isomers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the complexes have been obtained which are superior in quality to and more informative than those reported previously [1].

## Experimental

Previously published methods were used to prepare $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2^{-}}\right.$ $\left.(\mathrm{CO})_{3}(\mathrm{CNMe})\right][3],\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNMe})_{2}\right]$ [4] and their CNEt counterparts, and $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNMe})_{2}\right]$. Other chemicals were purchased.

Unless otherwise stated reactions were carried out at room temperature under nitrogen in dried and deoxygenated solvents.

Infrared spectra were obtained on a Perkin Elmer 1710 or 1720 FTIR spectrometer. NMR spectra were obtained on a JEOL GNMX-270 using $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Analyses were carried out by the Analytical Laboratory of University College, Dublin.

The reaction of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{3}(\mathrm{CNR})\right]$ with $\mathrm{R}^{\prime} \mathrm{OSO}_{2} \mathrm{CF}_{3}\left(\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{Me}\right.$ or Et$)$
$\mathrm{R}^{\prime} \mathrm{OSO}_{2} \mathrm{CF}_{3}$ was added to a solution of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{3}(\mathrm{CNMe})\right](1-3 \mathrm{~g}$; mole ratio $1.66: 1$ ) in benzene ( $50-100 \mathrm{~cm}^{3}$ ). An immediate reaction took place to give a red powder, which was filtered off and recrystallized from acetonitrile-ether or methanol-ether mixtures to give $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left\{\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right)\right.\right.$ Me \} $\mathrm{SO}_{3} \mathrm{CF}_{3}$ (yield $90 \%$ ).

The method may be extended to reactions carried out in carbon disulphide, chloroform, or acetonitrile in refluxing solvents as well as at room temperature, and to $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{3}(\mathrm{CNEt})\right]$, which gives $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\{\mu-\right.$ $\left.\left.\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{Et}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ (yield 90\%).

A 90:10 mixture of cis and trans $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})(\mu-\right.$ $\left.\left.\mathrm{CNMe}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ was chromatographed on alumina with chloroform-methanol mixtures as eluent and separated into orange-red cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu\right.$ $\left.\left.\mathrm{CNMe}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ and purple-red $60: 40$ mixture of trans and cis-[Fe $2(\eta$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$. Some demethylation also took place to give $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{3} \mathrm{CNMe}\right]$.

The reaction of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNR})_{2}\right]$ with $\mathrm{R}^{\prime} \mathrm{OSO}_{2} \mathrm{CF}_{3}\left(R, R^{\prime}=\mathrm{Me}\right.$ or Et)
$\mathrm{MeOSO}_{2} \mathrm{CF}_{3}$ was added rapidly to a solution of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNMe})_{2}\right]$ ( 1.8 gm ; mole ratio $3: 1$ ) in benzene ( $60 \mathrm{~cm}^{3}$ ), and the mixture stirred for 2.5 h . The precipitated solid was filtered off and extracted with chloroform. The insoluble
residue was analytically pure orange-red $\left[\mathrm{Fe}_{2}\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2}\right]$ $\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ (yield $50 \%$ ). It could be recrystallized from acetonitrile if required. The filtered extracts were evaporated to dryness at reduced pressure and the residue recrystallized from ethanol-ether mixtures to give $\left[\mathrm{Fe}_{2}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNMe})\left(\mathrm{CNMe}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ as a red powder (yield $45 \%$ ).
$\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{CNMe}^{2}\right)\left(\mathrm{CNMe}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ (yield $<5 \%$ ) and $\left[\mathrm{Fe}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{CNMe}_{2}\right)_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ (yield $80 \%$ ) may be prepared similarly from $\left[\mathrm{Fe}_{2}\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNMe})_{2}\right]$. Orange crystals of $\left[\mathrm{Fe}_{2}\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}\right.$ $\left.(\mathrm{CO})_{2}\left(\mathrm{CNMe}_{2}\right)_{2} \mathrm{ISO}_{3} \mathrm{CF}_{3}\right]_{2}$, suitable for an X-ray diffraction study, were grown from acetonitrile-ether mixtures (see below).

By the same procedure, $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNEt})_{2}\right]$ and $\mathrm{MeOSO}_{2} \mathrm{CF}_{3}$ or $\mathrm{EtOSO}_{2} \mathrm{CF}_{3}$ gave $\left[\mathrm{Fe}_{2}\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left\{\mathrm{CN}(\mathrm{Me}) \mathrm{Ett}_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}\right.$ (yield 20\%) and
 $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNEt})\left(\mathrm{CNEt}_{2}\right) \mathrm{SO}_{3} \mathrm{CF}_{3}$ and $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mathrm{CNEt}_{2}\right)_{2}\right]\left[\mathrm{SO}_{3}-\right.$ $\left.\mathrm{CF}_{3}\right]_{2}$. The last is very unstable and does not give consistent analyses.

The reaction of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNMe})_{2}\right]$ with $\mathrm{R}^{\prime} \mathrm{X}\left(\mathrm{R}^{\prime} \mathrm{X}=\mathrm{MeI}, \mathrm{PhCH} \mathrm{Cl}_{2} \mathrm{Br}\right.$ or $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{I}$ )
$\left[\mathrm{Fe}_{2}\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNMe})_{2}\right](1 \mathrm{~g})$ was dissolved in $\mathrm{R}^{\prime} \mathrm{X}\left(10 \mathrm{~cm}^{3}\right)$. After ca. 1 $h$, benzene ( $30 \mathrm{~cm}^{3}$ ) or benzene-hexane ( $1: 1,60 \mathrm{~cm}^{3}$ ) was added to the mixture, and the precipitate filtered off. It was a mixture of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu\right.$ -$\mathrm{CNMe})\left(\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{Me}\right] \mathrm{X}$ and $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{Me}\right)_{2}\right] \mathrm{X}_{2}$ salts. No attempt was made to isolate the former as they are best prepared as described elsewhere [1]. The latter were separated and purified by repeated crystallizations from chloroform, ether or their mixtures. Their yields in the original product mix were ca. $12 \%\left(\mathrm{R}^{\prime} \mathrm{X}=\mathrm{MeI}\right), 20 \%\left(\mathrm{PhCH}_{2} \mathrm{Br}\right)$ and $30 \%\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{I}\right)$, but the first of these was very unstable and consistent analyses could not be obtained.

The preparation of cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] B P h_{4}$
A solution of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ and $\mathrm{NaBPh}_{4}$ (mole ratio $1: 3$ ) in acetonitrile was stirred for 3 h before the solvent was removed under reduced pressure. The residue was extracted with dichloromethane, and the extracts filtered and evaporated to dryness at reduced pressure. The residue was dissolved in acetonitrile-ether mixtures and allowed to stand at $-15^{\circ} \mathrm{C}$. Ruby crystals of cis-[ $\left.\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{BPh}_{4}$ precipitated and were used for the crystal structure determination (see below).

The crystal and molecular structures of cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})(\mu\right.$ $\left.\left.\mathrm{CNMe}_{2}\right)\right] B \mathrm{BP}_{4}$ and $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3} J_{2}\right.$

The crystal data are summarised in Table 1. The structures were solved by direct methods, shelx86 [5], and refined by full matrix least squares using shelx76 [6]. Data were corrected for Lorentz and polarisation effects but not for absorption. One of the cyclopentadienyl rings of cis-[Fe $\mathbf{2}_{2}\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-$ $\left.\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{BPh}_{4}, \mathrm{C}(8)-\mathrm{C}(12)$, was disordered over two sites in the ratio of 0.75 to 0.25 . The carbon atoms of the other cyclopentadienyl ring, $\mathrm{C}(13)-\mathrm{C}(17)$, were not disordered but had large thermal parameters and hydrogen atoms were not attached to them. Other hydrogen atoms were included in calculated positions

Table 1
Crystal data for (a) cis-[Fe $\left.2_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{BPh}_{4}$ and (b) $\operatorname{cis}-\left[\mathrm{Fe}_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2} \mathrm{ISO}_{3} \mathrm{CF}_{3}\right]_{2}$

| Crystal Data | (a) | (b) |
| :---: | :---: | :---: |
| Crystal size (mm) | $0.38 \times 0.35 \times 0.25$ | $0.40 \times 0.35 \times 0.33$ |
| Formula | $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{BFe}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ | $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ |
| M (a.m.u.) | 602.581 | 736.260 |
| Space group | Triclinic | Monoclinic |
|  | $P \overline{1}$ | $P 2_{1} / n$ No. 14 |
| $a(\AA)$ | $9.370(1)$ | 10.400(5) |
| $b$ (A) | 13.682(1) | 8.033(2) |
| $c$ ( A ) | 14.830(1) | 35.11(1) |
| $\alpha^{\text {o }}$ | 103.54(1) | 90 |
| $\boldsymbol{\beta}^{\text {o }}$ | 90.46 (1) | 93.62(2) |
| $\gamma^{\circ}$ | 109.47(1) | 90 |
| $U\left(\AA^{3}\right)$ | 1734.97 | 2927(2) |
| Z | 2 | 4 |
| $D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.15 | 1.67 |
| $\mu \mathrm{cm}^{-1}$ | 8.18 | 11.36 |
| $F(000)$ | 744 | 1496 |
| Radiation | Mo-K ${ }_{\text {a }}$ | Mo-K ${ }_{\text {a }}$ |
| Graphite monochromator | $\lambda=0.7093 \AA$ | $\lambda=0.7093 \AA$ |
| Diffractometer | Enraf-Nonius CAD4F | Enraf-Nonius CAD4F |
| Orienting reflections, range | $25,13<\theta<20^{\circ}$ | $25,13<\theta<20^{\circ}$ |
| Temperature ( ${ }^{\circ} \mathrm{C}$ ) | 22 | 22 |
| Scan method | $\omega-2 \theta$ | $\omega-2 \theta$ |
| Data collection range | $2<2 \theta<60^{\circ}$ | $2<2 \theta<48^{\circ}$ |
| No. of unique data | 7867 | 4084 |
| Total $I>3 \sigma I$ | 4089 | 3246 |
| No. of parameters fitted | 307 | 379 |
| $R, R_{\text {w }}$ | 5.60\%, 6.51\% | 6.24\%, 6.86\% |
| Quality-of-fit indicator | 3.6 | 0.85 |
| Largest Shift/esd, final cycle | <0.001 | < 0.001 |
| Largest positive peak (e/ $\mathrm{A}^{3}$ ) | 0.31 | 0.56 |
| Largest negative peak ( $\mathrm{e} / \AA^{3}$ ) | -0.16 | -0.26 |

$\overline{R=\left[\Sigma\left\|F_{\mathrm{o}}|-| F_{\mathrm{c}}\right\|\right] / \Sigma\left|F_{\mathrm{o}}\right| . R_{\mathrm{w}}=\left[\left[\Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}\right] /\left[\Sigma\left(\left|F_{\mathrm{o}}\right|\right)^{2}\right]^{1 / 2} ; \mathrm{w}=1 /\left[\left(\sigma F_{\mathrm{o}}\right)^{2}-0.0011 \cdot F_{\mathrm{o}}^{2}\right] \text {. Qual- }\right.}$ ity-of-fit $\left.=\left[\Sigma \mathrm{w}\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) / N_{\text {obs }}-N_{\text {parameters }}\right)\right]^{1 / 2}$
with fixed thermal parameters ( 0.075 ). The non-hydrogen atoms of the cations except those of the disordered cyclopentadienyl ring were refined anisotropically. The atomic scattering factors for non-hydrogen atoms and hydrogen atoms and the anomalous dispersion correction factors were taken from the literature [7,8,9]. All calculations were performed on a VAX 8700 computer. The orter program was used to obtain the drawings [10].

The structure of the cations and atom labelling schemes are shown in Figs. 1 and 2. Heavy atom coordinates are given in Tables 2 and 3, and selected bond lengths and angles in Tables 4 and 5. Complete lists of bond lengths and angles, tables of hydrogen atom coordinates, anisotropic thermal parameters for non-hydrogen atoms and isotropic thermal parameters (for cis-[Fe ${ }_{2}(\eta$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{BPh}_{4}$ only) have been deposited with the


Fig. 1. Structure and atom labelling of the $\operatorname{cis}-\left\{\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right]^{+}$cation.


Fig. 2. Structure and atom labelling of the cis-[ $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2}\right]^{2+}$ cation.

Cambridge Crystallographic Data Centre. Lists of observed and calculated structure factors are available from the authors.

## Results and discussion

The compounds prepared in this study are all solids. Most are reasonably air-stable both in the solid state and in solution. They are listed in Table 6 together with their melting points and analyses. Their infrared spectra ( $1550-2200 \mathrm{~cm}^{-1}$ ) are summarised in Table 7 and their ${ }^{1} \mathrm{H}$ NMR spectra in Table 8.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right\}\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$, [IIIa] $\mathrm{SO}_{3} \mathrm{CF}_{3}$, prepared in situ shows that two species are present which do not

Table 2
Fractional atomic coordinates for $c i s-\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CMe}_{2}\right)\right] \mathrm{BPh}_{4}$

| Atom | $\boldsymbol{x}$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Fe}(1)$ | $0.39308(8)$ | 0.64661(5) | 0.71849 (5) |
| $\mathrm{Fe}(2)$ | $0.20548(9)$ | $0.69066(6)$ | 0.62776(5) |
| $\mathrm{N}(1)$ | 0.1890 (5) | 0.4397(4) | 0.7504(3) |
| N(2) | 0.1819 (5) | 0.7323(3) | 0.8307(3) |
| O(1) | -0.0687(5) | 0.5137(4) | 0.6301(3) |
| O(2) | $0.3250(5)$ | 0.5299(3) | $0.5228(2)$ |
| C(1) | 0.0401(7) | 0.5826(5) | $0.6276(4)$ |
| C(2) | 0.3163(6) | 0.5904(4) | 0.5904(4) |
| C(3) | 0.2690(6) | $0.5200(4)$ | 0.7387(3) |
| C(4) | 0.0957(7) | 0.3359(4) | 0.7578(4) |
| O(5) | 0.2438(6) | $0.7040(4)$ | 0.7552(3) |
| C(6) | 0.0520(8) | 0.7711(5) | 0.8307(5) |
| C(7) | 0.2311(8) | 0.7222(5) | 0.9215(4) |
| C(8) | 0.6071(10) | $0.6333(12)$ | 0.6868(9) |
| C(9) | $0.6066(10)$ | $0.7363(12)$ | 0.6842(9) |
| C(10) | $0.5802(10)$ | $0.7876(12)$ | 0.7742(9) |
| C(11) | $0.5644(10)$ | 0.7163(12) | 0.8324(9) |
| C(12) | $0.5810(10)$ | 0.6210(12) | 0.7783(9) |
| C(13) | $0.2600(8)$ | 0.7394(5) | 0.5025(4) |
| C(14) | 0.1075(8) | 0.7298(5) | 0.5191(4) |
| O(15) | 0.1099(8) | 0.8025(5) | 0.6055(4) |
| C(16) | $0.2640(8)$ | 0.8571(5) | 0.6422(4) |
| C(17) | 0.3567(8) | 0.8181(5) | $0.5785(4)$ |
| C(108) | 0.6188(28) | 0.6898(34) | 0.6693(12) |
| C(109) | 0.5943(28) | $0.7794(34)$ | 0.7286(12) |
| O(110) | 0.5607(28) | $0.7560(34)$ | 0.8160(12) |
| O(111) | $0.5646(28)$ | $0.6519(34)$ | 0.8107(12) |
| C(112) | 0.6005(28) | $0.6111(34)$ | $0.7200(12)$ |
| B(1) | 0.5159(6) | 0.2113(4) | 0.7928(4) |
| C(18) | 0.6270(5) | 0.1459(4) | 0.7494 (3) |
| C(19) | 0.6178(6) | 0.0937(4) | 0.6558(3) |
| C(20) | 0.7143 (7) | 0.0381(5) | 0.6194(4) |
| C(21) | 0.8230(7) | $0.0326(5)$ | 0.6778(4) |
| C(22) | 0.8397(7) | 0.0820(4) | $0.7706(4)$ |
| C(23) | 0.7439(6) | 0.1383(4) | 0.8056(4) |
| C(24) | 0.4136(5) | $0.2206(3)$ | $0.7067(3)$ |
| C(25) | $0.4535(6)$ | $0.3072(4)$ | 0.6662(3) |
| C(26) | 0.3729(7) | 0.3102(5) | 0.5886(4) |
| C(27) | 0.2470(7) | $0.2240(5)$ | 0.5492(4) |
| C(28) | $0.2005(7)$ | 0.1374(5) | 0.5849(4) |
| C(29) | 0.2821(6) | 0.1358(4) | 0.6635(3) |
| C(30) | 0.4012(5) | 0.1502(3) | 0.8619(3) |
| C(31) | 0.4215(6) | 0.0714(4) | 0.8993(3) |
| C(32) | 0.3271(7) | 0.0289(5) | 0.9637(4) |
| C(33) | $0.2102(7)$ | 0.0605(5) | 0.9902(4) |
| C(34) | 0.1825(7) | 0.1372(4) | 0.9538(4) |
| C(35) | 0.2764(6) | 0.1802(4) | 0.8917(3) |
| C(36) | 0.6235(5) | $0.3320(4)$ | 0.8534(3) |
| C(37) | 0.5919(6) | 0.3857(4) | 0.9390(3) |
| C(38) | $0.6884(7)$ | 0.4872(5) | 0.9877(4) |
| C(39) | 0.8165(7) | $0.5390(5)$ | 0.9531(4) |
| C(40) | 0.8507(8) | 0.4900(5) | 0.8673(4) |
| C(41) | 0.7557(6) | 0.3892(4) | 0.8199(4) |

Table 3
Fractional atomic coordinates for $\operatorname{cis}-\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2} \mathrm{ISO}_{3} \mathrm{CF}_{3}\right]_{2}$

| Atom | $\boldsymbol{x}$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| Fe(1) | $0.44527(7)$ | 0.56435(9) | $0.15750(2)$ |
| $\mathrm{Fe}(2)$ | $0.28542(7)$ | 0.52742(9) | 0.10192(2) |
| N(2) | 0.1727(4) | 0.5401(5) | 0.1781(1) |
| N(1) | 0.5446(4) | 0.3839(6) | 0.0914(1) |
| O(1) | 0.4620(5) | 0.2355(6) | 0.1920(1) |
| O(2) | 0.2254(5) | 0.1736(5) | 0.1037(2) |
| C(1) | 0.4539(5) | 0.3648 (7) | 0.1792(2) |
| C(2) | 0.2489(5) | $0.3126(8)$ | 0.1038(2) |
| C(3) | 0.4608(5) | 0.4653(6) | 0.1095(1) |
| C(4) | 0.5190(6) | 0.3221(8) | 0.0514(2) |
| C(5) | 0.6722(6) | 0.3448(9) | 0.1088(2) |
| C(6) | 0.2649(5) | 0.5441(5) | 0.1547(1) |
| C(7) | 0.0361(5) | $0.5221(8)$ | 0.1655(2) |
| C(8) | 0.1964(6) | 0.5550 (7) | 0.2193(2) |
| C(9) | 0.6114(5) | $0.4424(8)$ | 0.1920(2) |
| C(10) | 0.6182(6) | 0.7057(8) | 0.1549(2) |
| C(11) | 0.5110(7) | 0.8059(7) | 0.1459 (2) |
| C(12) | 0.4358(5) | 0.8103(7) | 0.1779 (2) |
| C(13) | 0.4958(5) | $0.7090(7)$ | 0.2056(2) |
| C(14) | 0.7110(7) | $0.5412(11)$ | 0.2140(2) |
| C(15) | 0.1257(5) | 0.5662(7) | 0.0618(2) |
| C(16) | 0.1367(6) | $0.7015(7)$ | 0.0867(2) |
| C(17) | 0.2564(7) | 0.7785(7) | 0.0846(2) |
| C(18) | 0.3242(6) | 0.6894(8) | 0.0567(2) |
| C(19) | 0.2436(6) | $0.5584(7)$ | 0.0433(2) |
| C(20) | 0.0133(6) | 0.4550(10) | 0.0542(2) |
| S(1) | 0.71067(14) | 0.80492(20) | 0.05252(5) |
| S(2) | 1.06203(15) | 0.00976(17) | $0.19253(4)$ |
| F(1) | $0.9055(7)$ | $0.8537(8)$ | 0.0120(2) |
| F(2) | 0.7431(11) | $1.0044(14)$ | -0.0030(3) |
| F(3) | 0.8583(10) | 1.0548(10) | 0.0441(3) |
| F(4) | 0.8518(6) | -0.0768(8) | 0.1554(2) |
| F(5) | 0.9323(4) | 0.1464(6) | 0.1350(1) |
| F(6) | 0.8381(4) | 0.1518(8) | 0.1860(2) |
| $\mathrm{O}(3)$ | 0.6599(7) | 0.6847(8) | 0.0268(2) |
| O(4) | 0.6226(6) | 0.9168(7) | 0.0678(2) |
| O(5) | 0.7997(5) | $0.7320(8)$ | 0.0802(2) |
| O(6) | 1.1139(5) | 0.1673(6) | $0.2025(1)$ |
| O(7) | 1.0207(5) | -0.0865(6) | 0.2242(1) |
| O(8) | 1.1315(5) | -0.0835(6) | 0.1658(1) |
| C(21) | 0.8137(10) | $0.9350(10)$ | 0.0257(3) |
| C(22) | 0.9142(6) | 0.0559(9) | 0.1655(2) |

undergo interconversion at $+50^{\circ} \mathrm{C}$. The principal isomer has a cis geometry similar to that found for $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right]$ [1]. The minor species is probably its trans counterpart. Although a pure sample of it has not been isolated, the separation of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ into the orange-red cis and a $40: 60$ mixture of this with the red-purple trans isomer has been achieved by careful chromatography. Complete separation of the two isomers was hampered by the low proportion of the trans species and

Table 4
Selected bond lengths ( $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\mathrm{cis}-\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu\right.\right.$ - $\left.\left.\mathrm{CNMe}_{2}\right)\right] \mathrm{BPh}_{4}$

| Bond lengths |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 2.512(1) | $\mathrm{Fe}(1)-\mathrm{C}(2)$ | 1.909(5) |
| $\mathrm{Fe}(1)-\mathrm{C}(3)$ | 1.830(6) | $\mathrm{Fe}(1)-\mathrm{C}(5)$ | 1.848(5) |
| $\mathrm{Fe}(1)-\mathrm{C}(8)$ | $2.120(7)$ | $\mathrm{Fe}(1)-\mathrm{C}(9)$ | 2.11(1) |
| $\mathrm{Fe}(1)-\mathrm{C}(10)$ | $2.11(1)$ | $\mathrm{Fe}(1)-\mathrm{C}(11)$ | 2.126(9) |
| $\mathrm{Fe}(1)-\mathrm{C}(12)$ | 2.13(1) | $\mathrm{Fe}(1)-\mathrm{C}(108)$ | 2.18(2) |
| $\mathrm{Fe}(1)-\mathrm{C}(109)$ | 2.11(3) | $\mathrm{Fe}(1)-\mathrm{C}(110)$ | 2.05(3) |
| $\mathrm{Fe}(1)-\mathrm{C}(111)$ | 2.07(3) | $\mathrm{Fe}(1)-\mathrm{C}(112)$ | 2.16(3) |
| $\mathrm{Fe}(2)-\mathrm{C}(1)$ | 1.749(7) | $\mathrm{Fe}(2)-\mathrm{C}(2)$ | 1.967(6) |
| $\mathrm{Fe}(2)-\mathrm{C}(5)$ | 1.876(5) | $\mathrm{Fe}(2)-\mathrm{C}(13)$ | 2.127(5) |
| $\mathrm{Fe}(2)-\mathrm{C}(14)$ | $2.105(60$ | $\mathrm{Fe}(2)-\mathrm{C}(15)$ | 2.097(5) |
| $\mathrm{Fe}(2)-\mathrm{C}(16)$ | $2.114(6)$ | $\mathrm{Fe}(2)-\mathrm{C}(17)$ | 2.132(6) |
| $\mathrm{N}(1)-\mathrm{C}(3)$ | 1.157(6) | $N(1)-C(4)$ | 1.429(7) |
| $\mathrm{N}(2)-\mathrm{C}(5)$ | 1.303(7) | $\mathrm{N}(2)-\mathrm{C}(6)$ | 1.481(7) |
| $\mathrm{N}(2)-\mathrm{C}(7)$ | $1.470(7)$ | $\mathrm{O}(1)-\mathrm{C}(1)$ | 1.142(7) |
| $\mathrm{O}(2)-\mathrm{C}(2)$ | $1.163(6)$ | $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.420(1)$ |
| $\mathrm{C}(8)-\mathrm{C}(12)$ | $1.420(1)$ | C(9)-C(10) | $1.420(1)$ |
| C(10)-C(11) | $1.420(1)$ | $\mathrm{C}(11)-\mathrm{C}(12)$ | 1.420(1) |
| C(13)-C(14) | $1.420(1)$ | $\mathrm{C}(13)-\mathrm{C}(17)$ | $1.420(1)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | 1.4200 (1) | C(15)-C(16) | $1.420(1)$ |
| $\mathrm{C}(16)-\mathrm{C}(17)$ | $1.420(1)$ | C(108)-C(109) | $1.420(1)$ |
| C(108)-C(112) | 1.420(1) | C(109)-C(110) | 1.420(1) |
| $\mathrm{C}(110)-\mathrm{C}(111)$ | $1.420(1)$ | $\mathrm{C}(111)-\mathrm{C}(112)$ | $1.420(1)$ |
| $\mathrm{B}(1)-\mathrm{C}(18)$ | $1.632(7)$ | B(1)-C(24) | 1.643(7) |
| B(1)-C(30) | 1.651(7) | B(1)-C(36) | 1.653(7) |
| C(18)-C(19) | 1.392(7) | C(18)-C(23) | 1.417(7) |
| $\mathrm{C}(19)-\mathrm{C}(20)$ | $1.402(8)$ | C(20)-C(21) | $1.363(8)$ |
| $\mathrm{C}(21)-\mathrm{C}(22)$ | $1.365(8)$ | C(22)-C(23) | $1.398(8)$ |
| C(24)-C(25) | $1.395(6)$ | $\mathrm{C}(24)-\mathrm{C}(29)$ | $1.400(6)$ |
| $\mathrm{C}(25)-\mathrm{C}(26)$ | $1.387(7)$ | C(26)-C(27) | 1.365(8) |
| C(27)-C(28) | 1.352(8) | C(28)-C(29) | 1.397(7) |
| $\mathrm{C}(30)-\mathrm{C}(31)$ | 1.385(7) | C(30)-C(35) | 1.405(7) |
| C(31)-C(32) | 1.401(8) | C(32)-C(33) | $1.336(8)$ |
| C(33)-C(34) | $1.380(8)$ | C(34)-C(35) | 1.375(7) |
| C(36)-C(37) | 1.398(7) | $\mathrm{C}(36)-\mathrm{C}(41)$ | 1.393(7) |
| C(37)-C(38) | 1.396 (7) | $\mathrm{C}(38)-\mathrm{C}(39)$ | 1.349 (8) |
| C(39)-C(40) | $1.386(8)$ | C(40)-C(41) | 1.381(8) |
| Bond angles |  |  |  |
| $\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 50.6(2) | $\mathrm{C}(3)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 99.8(2) |
| $\mathrm{C}(3)-\mathrm{Fe}(1)-\mathrm{C}(2)$ | 87.5(2) | $\mathrm{C}(5)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 48.0(2) |
| $\mathrm{C}(5)-\mathrm{Fe}(1)-\mathrm{C}(2)$ | 96.1(2) | $\mathrm{C}(5)-\mathrm{Fe}(1)-\mathrm{C}(3)$ | 88.3(2) |
| $\mathrm{C}(8)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 130.9(5) | $\mathrm{C}(8)-\mathrm{Fe}(1)-\mathrm{C}(2)$ | 91.1(3) |
| $\mathrm{C}(8)-\mathrm{Fe}(1)-\mathrm{C}(3)$ | 108.9(5) | $\mathrm{C}(8)-\mathrm{Fe}(1)-\mathrm{C}(5)$ | 161.7(4) |
| $\mathrm{C}(9)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 104.3(5) | $\mathrm{C}(9)-\mathrm{Fe}(1)-\mathrm{C}(2)$ | 91.8(4) |
| $\mathrm{C}(9)-\mathrm{Fe}(1)-\mathrm{C}(3)$ | 148.2(4) | $\mathrm{C}(9)-\mathrm{Fe}(1)-\mathrm{C}(5)$ | 123.4(4) |
| $\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{N}(1)$ | 179.0(5) | $\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(4)$ | 174.7(5) |
| $\mathrm{Fe}(2)-\mathrm{C}(1)-\mathrm{O}(1)$ | 177.9(6) | $\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(6)$ | 127.7(5) |
| $\mathrm{Fe}(1)-\mathrm{C}(2)-\mathrm{Fe}(2)$ | 80.8(2) | $\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(7)$ | 122.0(5) |
| $\mathrm{Fe}(1)-\mathrm{C}(5)-\mathrm{Fe}(2)$ | 84.8(2) | $\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(7)$ | 115.2(5) |

competing demethylation. The cis:trans product ratio is a function of the solvent in which $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ was prepared. It increases from 90:10 in boiling carbon disulphide to $94: 6$ in benzene and 100:0 in acetonitrile.

The reaction of I with MeI in benzene is much slower than that with $\mathrm{MeOSO}_{2} \mathrm{CF}_{3}$ but the ratio of cis: trans $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right]^{+}$ in the products is comparable. Both cis- and trans-[ $\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu$ -$\left.\mathrm{CO})\left(\mu-\mathrm{CNEt}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ (ratio 88:12) are formed, but only the cis isomer could be detected for all $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left\{\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathbf{R}\right)\right] \mathrm{X}$ salts where $\mathbf{R} \neq \mathbf{R}^{\prime}$.
$\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\{\mu-\mathrm{CN}(\mathrm{R}) \mathrm{Me}\}\right]^{+},[\mathrm{IV}]^{+}$, salts are the only products formed in the reaction of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNMe})_{2}\right]$ with alkyl halides or $\mathrm{R}^{\prime} \mathrm{OSO}_{2} \mathrm{CF}_{3}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$ or Et$)$ in only slight excess. The rapid addition of a large excess of $\mathrm{R}^{\prime} \mathrm{OSO}_{2} \mathrm{CF}_{3}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$ or Et$)$ to a solution of $\left[\mathrm{Fe}_{2}(\eta\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mathrm{CNR})_{2}$ ], $\mathrm{R}=\mathrm{Me}$ (IIa) or Et (IIb), or the dissolution of IIa in the more reactive alkyl halides $\mathrm{R}^{\prime} \mathrm{X}\left(\mathrm{R}^{\prime} \mathrm{X}=\mathrm{MeI}, \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{I}\right.$ or PhCH 2 Br$)$ give two products cis-[ $\left.\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNR})(\mu-\mathrm{CO})\left\{\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right\}\right] \mathrm{X}$, [IV]X, and cis-$\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left\{\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right\}_{2}\right] \mathrm{X}_{2},[\mathrm{~V}] \mathrm{X}_{2}$, but not their trans counterparts. Analogues of [V]X $\mathbf{X}_{2}$ where $\mathbf{R}^{\prime}=\mathbf{H}$ have been obtained previously as the sole products from the reactions of II with an excess of strong protic acids [11]. As the monoalkylated cations [IV] ${ }^{+}$are not fluxional and do not undergo terminal-bridge $\mathrm{CO} / \mathrm{CNMe}$ site exchange, they do not react with $\mathrm{R}^{\prime} \mathrm{OSO}_{2} \mathrm{CF}_{3}$ to give [V] ${ }^{2+}$ salts at room temperature. Consequently, [IV] ${ }^{+}$must have been formed from cis-[ $\mathrm{Fe}_{2}(\eta$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNR})(\mu-\mathrm{CO})(\mu-\mathrm{CNR})\right]$, and $[V]^{2+}$ from cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\right.$ $\left.\mathrm{CNR})_{2}\right]$. This implies that the reaction of $\mathrm{R}^{\prime} \mathrm{X}$ with cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}{ }^{-}\right.$ (CO) $(\mathrm{CNR})(\mu-\mathrm{CO})(\mu-\mathrm{CNR})]$ is faster than with the other isomers of (II) but is still sufficiently slow that the equilibrium between these isomers [3,4] can be maintained throughout the alkylation. On the other hand, the rate of reaction of $R^{\prime} X$ in very large excess with II must be much faster than the rate of interconversion of their isomers so that mono- and bis-alkylated derivatives are formed. It is straightforward to account for the greater reactivity of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNR})(\mu\right.$ -$\mathrm{CO})\left(\mu\right.$-CNR)] than of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CNR})_{2}\right]$ in terms of (a) a terminal CO ligand being a poorer $\sigma$-donor/better $\pi$-acceptor than a $\mu$-CO ligand, (b) a terminal CNR ligand being a better $\sigma$-donor/poorer $\pi$-acceptor than a $\mu$-CNR ligand, (c) steric inhibition of the formation of the $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CNR})_{2}\right]$ precursor, or (d) a combination of all three. (a) and (b) result in greater back-donation into the $\mu$-CNR ligand of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNR})(\mu-\mathrm{CO})(\mu-\mathrm{CNR})\right]$ than into the two $\mu$-CNR ligands of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNR}_{2}\right]\right.$, which makes the former more nucleophilic. However it is not easy to explain why, in both of these species and the $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})(\mu-\mathrm{CNR})\right]$ discussed above, the cis isomers react more rapidly than their trans counterparts, because infrared spectroscopy suggests that in all cases the cis:trans ratios in solutions of the substrates do not differ by as much as the cis: trans ratios in the alkylated products.

## Infrared spectra

The most important absorption bands are those due to the stretching vibrations of $\mu$ - $\mathrm{CNR}_{2}$ ( $c a .1570-1630 \mathrm{~cm}^{-1}$ ), $\mu$-CO ( $c a .1800-1840 \mathrm{~cm}^{-1}$ ), terminal CO ( $c a$. $1960-2050 \mathrm{~cm}^{-1}$ ) and terminal CNR ligands (ca. 2160-2190 $\mathrm{cm}^{-1}$ ) (Table 7). There are others due to both anions and cations which will not be discussed as they yield little structural information except to confirm the presence of the [ $\left.\mathrm{SO}_{3} \mathrm{CF}_{3}\right]^{-}$where appropriate.

The relative intensities of the absorption bands due to the $\nu(\mathrm{CO})$ vibrations of the sole species present in solutions of $[\mathrm{V}] \mathrm{X}_{2}$ (see below) confirm that the cations

Table 5
Selected bond lengths $(\AA)$ and angles ( ${ }^{\circ}$ ) for cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2} \mathrm{ISO}_{3} \mathrm{CF}_{3}\right]_{2}$

| Bond lengths |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 2.500(1) | $\mathrm{Fe}(1)-\mathrm{C}(1)$ | 1.774(6) |
| $\mathrm{Fe}(1)-\mathrm{C}(3)$ | $1.880(5)$ | $\mathrm{Fe}(1)-\mathrm{C}(6)$ | 1.879(5) |
| $\mathrm{Fe}(1)-\mathrm{C}(9)$ | $2.140(5)$ | $\mathrm{Fe}(1)-\mathrm{C}(10)$ | $2.134(6)$ |
| $\mathrm{Fe}(1)-\mathrm{C}(11)$ | $2.106(6)$ | $\mathrm{Fe}(1)-\mathrm{C}(12)$ | $2.106(5)$ |
| $\mathrm{Fe}(1)-\mathrm{C}(13)$ | 2.091(5) | $\mathrm{Fe}(2)-\mathrm{C}(2)$ | 1.769(6) |
| $\mathrm{Fe}(2)-\mathrm{C}(3)$ | 1.893(5) | $\mathrm{Fe}(2)-\mathrm{C}(6)$ | 1.883(5) |
| $\mathrm{Fe}(2)-\mathrm{C}(15)$ | $2.132(5)$ | $F \in(2)-C(16)$ | $2.128(5)$ |
| $\mathrm{Fe}(2)-\mathrm{C}(17)$ | $2.123(6)$ | $\mathrm{Fe}(2)-\mathrm{C}(18)$ | 2.112(6) |
| $\mathrm{Fe}(2)-\mathrm{C}(19)$ | $2.092(6)$ | N(2)-C(6) | 1.301(6) |
| $\mathrm{N}(2)-\mathrm{C}(7)$ | 1.468(7) | $\mathrm{N}(2)-\mathrm{C}(8)$ | $1.459(8)$ |
| $\mathrm{N}(1)-\mathrm{C}(3)$ | $1.289(7)$ | N(1)-C(4) | 1.497(7) |
| $\mathrm{N}(1)-\mathrm{C}(5)$ | 1.460(7) | $\mathrm{O}(1)-\mathrm{C}(1)$ | 1.134(7) |
| $\mathrm{O}(2)-\mathrm{C}(2)$ | 1.143(7) | C(9)-C(10) | 1.402(9) |
| C(9)-C(13) | 1.426(8) | C(9)-C(14) | 1.494(9) |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.39 (1) | C(11)-C(12) | 1.410(9) |
| C(12)-C(13) | $1.385(8)$ | $\mathrm{C}(15)-\mathrm{C}(16)$ | $1.395(8)$ |
| C(15)-C(19) | 1.425(8) | C(15)-C(20) | 1.482(9) |
| C(16)-C(17) | 1.396 (9) | C(17)-C(18) | 1.435(9) |
| $\mathrm{C}(18)-\mathrm{C}(19)$ | $1.408(9)$ | S(1)-O(3) | $1.402(6)$ |
| $\mathrm{S}(1)-\mathrm{O}(4)$ | 1.413 (5) | S(1)-O(5) | 1.426 (6) |
| $\mathrm{S}(1)-\mathrm{C}(21)$ | 1.804(8) | $\mathrm{S}(2)-\mathrm{O}(6)$ | 1.411(5) |
| S(2)-O(7) | $1.440(5)$ | $\mathrm{S}(2)-\mathrm{O}(8)$ | 1.432(4) |
| S(2)-C(22) | 1.794(7) | F(1)-C(21) | 1.28(1) |
| $\mathrm{F}(2)-\mathrm{C}(21)$ | 1.33(1) | F(3)-C(21) | 1.23(1) |
| $\mathrm{F}(4)-\mathrm{C}(22)$ | $1.286(8)$ | $\mathrm{F}(5)-\mathrm{C}(22)$ | $1.317(8)$ |
| $\mathrm{F}(6)-\mathrm{C}(22)$ | $1.345(8)$ |  |  |
| Bond angles |  |  |  |
| $\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 103.9(2) | $\mathrm{C}(3)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 48.7(2) |
| $\mathrm{C}(3)-\mathrm{Fe}(1)-\mathrm{C}(1)$ | 89.8(2) | $\mathrm{C}(6)-\mathrm{Fe}(1)-\mathrm{FE}(2)$ | 48.4(2) |
| $\mathrm{C}(6)-\mathrm{Fe}(1)-\mathrm{C}(1)$ | 88.1(2) | $\mathrm{C}(6)-\mathrm{Fe}(1)-\mathrm{C}(3)$ | 93.3(2) |
| $\mathrm{C}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | 102.8(2) | $\mathrm{C}(3)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | 48.3(2) |
| $\mathrm{C}(3)-\mathrm{Fe}(2)-\mathrm{C}(2)$ | 86.8(2) | $\mathrm{C}(6)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | 48.3(1) |
| $\mathrm{C}(6)-\mathrm{Fe}(2)-\mathrm{C}(2)$ | 89.8(2) | $\mathrm{C}(6)-\mathrm{Fe}(2)-\mathrm{C}(3)$ | 92.8(2) |
| $\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(6)$ | 123.4(5) | $\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(6)$ | 122.6(5) |
| $\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(7)$ | 114.0(5) | $\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(3)$ | 123.0(5) |
| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(3)$ | 121.9(5) | $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(4)$ | 115.1(4) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Fe}(1)$ | 177.6(5) | $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Fe}(2)$ | 177.8(5) |
| $\mathrm{Fe}(2)-\mathrm{C}(3)-\mathrm{Fe}(1)$ | 83.0(2) | $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{Fe}(1)$ | 139.1(4) |
| $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{Fe}(2)$ | 137.8(4) | $\mathrm{Fe}(2)-\mathrm{Cl}(6)-\mathrm{Fe}(1)$ | 83.3(2) |
| $\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{Fe}(1)$ | 137.9(4) | $\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{Fe}(2)$ | 138.8(4) |
| $O(3)-S(1)-O(3)$ | 117.1(4) | $\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{O}(3)$ | 111.0 (4) |
| $\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{O}(4)$ | 114.3(4) | $\mathrm{C}(21)-\mathrm{S}(1)-\mathrm{O}(3)$ | 106.0(4) |
| $\mathrm{C}(21)-\mathrm{S}(1)-\mathrm{O}(4)$ | 104.5(4) | $\mathrm{C}(21)-\mathrm{S}(1)-\mathrm{O}(5)$ | 102.3(5) |
| $\mathrm{O}(7)-\mathrm{S}(2)-\mathrm{O}(6)$ | 114.7(3) | $\mathrm{O}(8)-\mathrm{S}(2)-\mathrm{O}(6)$ | 115.6(3) |
| $\mathrm{O}(8)-\mathrm{S}(2)-\mathrm{O}(7)$ | 114.4(3) | $\mathrm{C}(22)-\mathrm{S}(2)-\mathrm{O}(6)$ | 104.3(3) |
| $\mathrm{C}(22)-\mathrm{S}(2)-\mathrm{O}(7)$ | 103.3(3) | $\mathrm{C}(22)-\mathrm{S}(2)-\mathrm{O}(8)$ | 102.3(3) |
| $\mathrm{F}(1)-\mathrm{C}(21)-\mathrm{S}(1)$ | 112.6(6) | F(2)-C(21)-S(1) | 108.7(8) |
| $\mathrm{F}(2)-\mathrm{C}(21)-\mathrm{F}(1)$ | 108.6(9) | F(3)-C(21)-S(1) | 113.3(7) |
| $F(3)-C(21)-F(1)$ | 109.0(1) | $F(3)-C(21)-F(2)$ | 104.0(1) |
| F(4)-C(22)-S(2) | 112.1(5) | $\mathrm{F}(5)-\mathrm{C}(22)-\mathrm{S}(2)$ | 112.4(5) |
| $\mathrm{F}(5)-\mathrm{C}(22)-\mathrm{F}(4)$ | 109.2(7) | $\mathrm{F}(6)-\mathrm{C}(22)-\mathrm{S}(2)$ | 110.5(5) |
| F(6)-C(22)-F(4) | 108.6(7) | $F(6)-C(22)-F(5)$ | 103.7(6) |

Table 6
Melting points and analyses of salts described in the text

| $\overline{\mathbf{R}^{\prime}, \mathbf{R}}$ | $\begin{aligned} & \text { m.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$ | Analyses ${ }^{\text {a }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | \% C | \%H | \% N |
| $\left[\mathrm{Fe}_{2}\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left\{\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right\}\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ |  |  |  |  |
| $\mathrm{Me}, \mathrm{Me}$ | 257-259 | 38.3 (38.4) | 3.0 (3.0) | 2.5 (2.6) |
| $\mathrm{Et}, \mathrm{Et}+\mathrm{H}_{2} \mathrm{O}$ | 219-222 | 39.9 (39.5) | 3.5 (3.8) | 2.3 (2.4) |
| $\mathrm{Et}, \mathrm{Me}$ | 223-226 | 39.4 (39.6) | 3.3 (3.3) | 2.6 (2.7) |
| $\left.\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNR})(\mu-\mathrm{CO})\left(\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ |  |  |  |  |
| $\mathrm{Me}, \mathrm{Me}$ | 151-156 | 39.4 (39.7) | 3.6 (3.5) | 5.0 (5.1) |
| $\mathrm{Me}, \mathrm{Me}^{\text {b }}$ |  | 68.6 (68.9) | 5.5 (5.5) | 3.7 (3.9) |
| $\mathrm{Me}, \mathrm{Et}$ |  | 41.8 (42.0) | 4.1 (4.0) | 4.7 (4.9) |
| $\mathrm{Et}, \mathrm{Me}$ | 149-151 | 40.6 (40.9) | 3.8 (3.8) | 4.8 (5.0) |
| $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left\{\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right]_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ |  |  |  |  |
| $\mathrm{Me}, \mathrm{Me}+\mathrm{H}_{2} \mathrm{O}$ | dec. $>220$ | 35.9 (35.9) | 3.9 (3.6) | 4.2 (4.4) |
| $\mathrm{Me}, \mathrm{Me}+\mathrm{H}_{2} \mathrm{O}^{\text {c }}$ | dec. $>220$ | 34.9 (35.0) | 3.5 (3.7) | 3.7 (3.7) |
| $\mathrm{Me}, \mathrm{Et}+\mathrm{H}_{2} \mathrm{O}$ | dec. $>220$ | 35.0 (35.0) | 3.8 (3.7) | 3.7 (3.7) |
| $\mathrm{PhCH}_{2}, \mathrm{Me}^{d}+\mathrm{H}_{2} \mathrm{O}$ | dec. $>220$ | 48.3 (48.7) | 4.3 (4.3) | 3.6 (3.8) |
| Allyl, $\mathrm{Me}^{e}+\mathrm{H}_{2} \mathrm{O}$ | dec. $>220$ | 36.3 (36.0) | 3.6 (3.8) | 3.6 (3.8) |

[^1]Table 7
The infrared spectra of the salts described in the text between 1550 and $2200 \mathrm{~cm}^{-1 a}$

| $\overline{\mathbf{R}^{\prime}, \mathbf{R}}$ | Absorption bands and assignment |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\nu(\mu-\mathrm{C}=\mathrm{N})$ | $\nu(\mu-\mathrm{CO})$ | $\nu(\mathrm{CO})$ | $\nu(\mathrm{CO})$ | $\nu(\mathrm{CN})$ |
| $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ |  |  |  |  |  |
| cis-Me, Me | 1594 (w) | 1817 (m) | 1993 (w) | 2027 (s) |  |
| cis-Me, $\mathrm{Me}^{\text {b }}$ | 1602 (w) | 1830 (m,br) | 1991 (w) | 2022 (s) |  |
| trans-Me, Me ${ }^{\text {b }}$ | 1600 (w) | 1842 (m) | 1997 (s) |  |  |
| Et, Me | 1586 (w) | 1833 (m) | 1991 (m) | 2017 (s) |  |
| Et, Et | 1596 (m) | 1837 (m) | 1985 (m) | 2016 (s) |  |
| $\left.\operatorname{cis-[~} \mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNR})(\mu-\mathrm{CO})\left(\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right\}\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ |  |  |  |  |  |
| $\mathrm{Me}, \mathrm{Me}$ | 1586 (w) | 1805 (m) |  | 1987 (s) | 2183 (m) |
| $\mathrm{Me}, \mathrm{Me}^{\text {c }}$ | 1579 (w) | 1816 (m) |  | 1982 (s) | 2186 (m) |
| $\mathrm{Me}, \mathrm{Et}$ | 1577 (w) | 1810 (m) |  | 1968 (s) | 2169 (m) |
| $\left.\operatorname{cis-[Fe} e_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left\{\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right\}_{2} \mathbf{I} \mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ |  |  |  |  |  |
| $\mathrm{Me}, \mathrm{Me}$ | 1616 (m) |  | 2027 (m) | 2049 (s) |  |
| $\mathrm{Me}, \mathrm{Me}^{\text {d }}$ | 1611 (m), 1631 (w) |  | 2016 (m) | 2034 (s) |  |
| $\mathrm{Me}, \mathrm{Et}$ | 1599 (m) |  | 2027 (m) | 2052 (s) |  |
| PhCH2, Me ${ }^{e}$ | 1593 (m) |  | 2010 (m) | 2033 (s) |  |
| allyl, $\mathrm{Me}^{f}$ | 1549 (m), 1645 (w) |  | 2012 (m) | 2041 (s) |  |

[^2]Table 8
The ${ }^{1} \mathrm{H}$ NMR spectra of the salts described in the text

| Isomer, $\mathrm{R}^{\prime}, \mathrm{R}$ | Resonances ${ }^{\text {a }}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{C}_{5} \mathrm{H}_{5}$ | $\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}$ | CNR |
| $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right\}\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ |  |  |  |
| cis, Me, Me | 5.32 | 4.29 |  |
| trans, Me, Me | 5.17 | 4.42 |  |
| cis, Et, Et | 5.32 | 4.56 (m), $1.62(\mathrm{t}, \mathrm{J}=7.3$ ) |  |
| trans, Et, Et | 5.10 | b |  |
| cis, Et, Me | 5.34, 5.32 | 4.20; 4.65 (m), 1.56 (t, $J=7.3$ ) |  |
| cis-[ $\left.\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNR})(\mu-\mathrm{CO})\left(\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ |  |  |  |
| cis, $\mathrm{Me}, \mathrm{Me}{ }^{\text {c }}$ | 4.92, 4.82 | 3.95, 3.96 | 2.95 |
| cis, Me, Me | 5.10, 5.03 | 4.23, 4.30 | 3.10 |
| $c i s, \mathrm{Me}, \mathrm{Me}{ }^{d}$ | 5.18, 5.12 | 4.31, 4.39 | 3.14 |
| cis, Me, Et $\alpha^{e}{ }^{e}$ | 5.09, 5.05 | 4.21; 4.60 (m), 1.53 (t, $J=7.3$ ) | 3.36 (m), 1.09 (t, $J=7.1$ ) |
| $\beta^{e}$ | 5.11, 5.02 | 4.15; ${ }^{\text {b }}, 1.58(\mathrm{t}, J=7.2)$ | 3.48 (q), 1.21 t, $J=6.6)$ |
| cis Et, Me $\alpha^{e}$ | 5.07, 5.04 | ${ }^{\text {b }}$, 1.52 (t, $J=7.1$ ), 4.22 | $b$ |
| $\beta^{\text {e }}$ | 5.10, 5.02 | 4.66 (m), 1.58 (t, $J=7.1) ; 4.14$ | 3.09 |
| cis, Et, Et | 5.08, 5.02 | $\begin{aligned} & 4.68(\mathrm{~m}), 4.53(\mathrm{~m}), 1.63(\mathrm{t}, J=7.2) \\ & 1.54(\mathrm{t}, J=7.3) \end{aligned}$ | 3.38 (q), 1.07 (t, $J=7.3$ ) |
| cis, Et, Et ${ }^{\text {c }}$ | 4.69, 4.59 | 4.16 (m), 1.35 (br), 1.32 (br) | 3.07 (br,m), 0.91 (t, $J=6.4)$ |
| cis- $\left[\mathrm{Fe}_{2}\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left\{\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right\}_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ |  |  |  |
| $c i s, \mathrm{Me}, \mathrm{Me}$ | 5.70 | 4.12 |  |
| cis, Me, Me ${ }^{f}$ | $\begin{aligned} & 5.76(\mathrm{~m}), \\ & 5.11(\mathrm{~m}) \end{aligned}$ | 4.11 |  |
| $\begin{array}{cc}c i s, \mathrm{Me}, \mathrm{Et} & \text { anti } \\ & s y n\end{array}$ | 5.68 | 4.06; 4.43 (m) 1.59 (t, $J=7.4$ ) |  |
|  | 5.70, 5.67 | 4.065; 4.43 (m) 1.59 (t, $J=7.4$ ) |  |
| cis, $\mathrm{PhCH}_{2}$, 6.09 .589 (d) 5.79 (d) ( $\left.J_{\text {AB }}=14.1\right)$ |  |  |  |
| $\mathrm{Me}^{8}$ anti | 6.05 | $\begin{aligned} & 4.09 ; 5.89(\mathrm{~d}), 5.79(\mathrm{~d})\left(J_{\mathrm{AB}}=14.1\right) \\ & 7.3-7.6(\mathrm{~m}) \end{aligned}$ |  |
| syn | 6.07, 6.00 | $\begin{aligned} & 4.09 ; 5.91(\mathrm{~d}), 5.80(\mathrm{~d})\left(J_{\mathrm{AB}}=14.3\right), \\ & 7.3-7.6(\mathrm{~m}) \end{aligned}$ |  |
| $\begin{aligned} & \text { cis, } \mathrm{C}_{3} \mathrm{H}_{5}, \\ & \mathrm{Me}^{d} \end{aligned}$ | 5.91 | $\begin{gathered} 4.15 ; 6.23(\mathrm{~b}, \mathrm{~m}), 5.66(\mathrm{~d}, J=9.3) \\ 5.61,5.06(\mathrm{dq}, J=13.2,6.1) \end{gathered}$ |  |
| $s y n$ | 5.93, 5.89 | $\begin{gathered} 4.15 ; 6.23(\mathrm{~b}, \mathrm{~m}), 5.66(\mathrm{~d}, J=9.3) \\ 5.61,5.06(\mathrm{dq}, J=13.2,6.1) \end{gathered}$ |  |

${ }^{a}$ Spectra run in $\mathrm{CDCl}_{3}$ unless it is stated otherwise. Chemical shifts quoted as ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$. All resonances are singlets unless it is stated otherwise; $\mathrm{m}=$ multiplet, $\mathrm{t}=$ triplet, $\mathrm{dq}=$ double quartet and $\mathrm{br}=$ broad with coupling constants $J$ given in Hz. . All integrations are as required by the formulae. ${ }^{b}$ Resonance obscured by those due to major isomer. ${ }^{c} \mathrm{BPh}_{4}{ }^{-}$counteranion. $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solvent. ${ }^{d} \mathrm{I}^{-}$counteranion. ${ }^{e} \alpha$ and $\beta$ isomers. See text. ${ }^{f} \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$ complex with Me resonance at 2.31 反. ${ }^{g} \mathrm{Br}^{-}$counteranion. $\mathrm{CD}_{3} \mathrm{OD}$ solvent. syn: anti ratio $=45: 55$.
have the $c i s-\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right\}_{2}\right]^{2+}$ structure (Fig. 2) with absorption bands at 2047 and $2022 \mathrm{~cm}^{-1}$ due respectively to their symmetric and antisymmetric $\nu(\mathrm{CO})$ vibrations and those at $c a .1600$ and $1630 \mathrm{~cm}^{-1}$ due to the antisymmetric and symmetric $\nu(\mathrm{C}=\mathrm{N})$ modes of a non-planar $\mathrm{Fe}_{2}\left(\mu-\mathrm{CNR}_{2}\right)_{2}$ moiety although it is only for cis-[Fe $\left.{ }_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ that these last are clearly resolved. These spectra are similar to those of cis-$\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CN}(\mathrm{H}) \mathrm{R}\}_{2}\right]^{2+}$ salts [11]. The infrared spectra of [III] ${ }^{+}$and
[IV] ${ }^{+}$salts have been discussed and assigned in ref. 1. Those of the former are consistent with a cis cation which is shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be the major or only species present. As anticipated, the spectrum of trans-[ $\mathrm{Fe}_{2}(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ is similar but shows only a single $\nu(\mathrm{CO})$ absorption band at $c a .1997 \mathrm{~cm}^{-1}$ due to the antisymmetric mode. The spectra of [IV]X are consistent with the $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNR})(\mu-\mathrm{CO})\left(\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right)\right]^{+}$ structure for the cations but do not define whether they are cis or trans; this required an X-ray structure determination (see below).

## NMR spectra

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ (Table 8) shows singlet resonances due to the cyclopentadienyl and $\mu-\mathrm{CNMe}_{2}$ protons of the cis isomer and another much weaker pair due to its trans isomer. Both sets of resonances are also present in the spectrum of $\left[\mathrm{Fe}_{2}(\mu\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNEt}_{2}\right)\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ but only those due to the cis isomer are present in the spectra of $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})(\mu-\mathrm{CN}(\mathrm{Et}) \mathrm{Me}] \mathrm{SO}_{3} \mathrm{CF}_{3}\right.$ and all other similar complexes with $\mu-\mathrm{CN}(\mathbf{R})\left(\mathbf{R}^{\prime}\right)$ ligands where $\mathbf{R} \neq \mathbf{R}^{\prime}$. However, in such cases the two cyclopentadienyl ligands are not equivalent and give rise to two equal singlets.
[IV] ${ }^{+}$salts where $R=R^{\prime}=M e$ exist as a single species in solution and it is assumed that their cation has the same structure as found for the $\left[\mathrm{BPh}_{4}\right]^{-}$salt in the solid state. Because of the difference between the CO and CNMe ligands there are two cyclopentadienyl and two $\mathrm{NMe}_{2}$ singlets as well as the CNMe resonance. Similar comments apply when $R=R^{\prime}=E t$, but the presence of the $\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{Et}$ ligand allows further isomerism (Fig. 3) and such cations shows two unequal sets of resonances due to $\alpha$ and $\beta$ forms although it is not possible to assign them. The $\alpha: \beta$ ratio varies from sample to sample, and more markedly from cation to cation.


$\alpha$ and $\beta$ forms


(b)

ANTI

Fig. 3. (a) Isomers of the $c i s-\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNR})\left(\mu-\mathrm{CO} K \mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right)\right]^{+}$cation ( $\alpha$ and $\beta$ forms). (b) syn and anti isomers of the cis-[ $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}\right)_{2}\right]^{2+}$ cation.

Thus for $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNEt})(\mu-\mathrm{CO})\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{Et}\}\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ the $\alpha$ isomer predominates (92:8 in one sample and 79:21 in another) but for $\left[\mathrm{Fe}_{2}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})(\mu-\mathrm{CN}(\mathrm{Et}) \mathrm{Me}\}\right] \mathrm{SO}_{3} \mathrm{CF}_{3}$ the $\beta$ isomer is the more important (12:88) even for reactions carried out in an NMR tube. These results imply that during the reaction of $\mathrm{R}^{\prime} \mathrm{OSO}_{2} \mathrm{CF}_{3}$ with $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNR})(\mu\right.$ -$\mathrm{CO})(\mu-\mathrm{CNR})]$ electrophilic attack on the $\mu-\mathrm{N}$ atom occurs from one end of the molecule rather than the other. This may be because the $t$-CNR and $t$-CO ligands differently affect the approach of the electrophile. Alternatively it may be because one orientation of the non-linear $\mu$-CNR ligand is favoured over the other in the substrate, perhaps due to steric interaction between $\mu-\mathrm{R}$ and $t$-CNR groups. Either explanation is also consistent with the formation of ca. equal amounts of syn and anti isomers of cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{Et}\}_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ as here the two terminal ligands in the cis-[Fe $e_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CNMe})\{\mu$ $\mathrm{CN}(\mathrm{Me}) \mathrm{Et}\}]^{+}$intermediate are identical (see below).

The cis isomer is the sole cation found in solutions of $[\mathrm{V}]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}\left(\mathrm{R}=\mathrm{R}^{\prime}=\right.$ Me ) in acetonitrile. It gives rise to two singlet resonances due to cyclopentadienyl and $\mu$-CNMe ${ }_{2}$ ligands (Table 8). Similar comments are valid for the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$ complex and when $R=R^{\prime}=E t$. However as a consequence of the asymmetrical $\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{Me}$ ligand there are two possible isomers of $[\mathrm{V}]^{2+}$ when $\mathrm{R}^{\prime}=\mathrm{Et}, \mathrm{CH}_{2} \mathrm{Ph}$ or allyl (Fig. 3), and both are formed in ca. equal amounts (see above). The syn gives rise to two cyclopentadienyl resonances and the anti to one, but the resonances due to their $\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{Me}$ ligand are sometimes coincident (Table 8).

The ${ }^{1} \mathrm{H}$ NMR spectra of all [III] ${ }^{+}$, [IV] ${ }^{+}$and [V] ${ }^{2+}$ salts are independent of temperature. They indicate that there is no facile cis-trans interconversion in [III] ${ }^{+}$or CO-CNMe exchange in [IV] ${ }^{+}$. This rigidity contrasts with the fluxionality of their precursors I and II. Perhaps the very high $\pi$-acceptor ability of the $\mathrm{CNR}_{2}{ }^{+}$ligands and their very strong preference for bridging as against terminal coordination means that non-bridged intermediates are energetically not accessible. Furthermore there is no rotation about the $\mathrm{C}=\mathrm{N}$ bond of the $\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}$ group in any cation. This is consistent with the shortness and high order of this bond (see below), and provides further confirmation that the ligand is best thought of as $C=N\left(R^{\prime}\right) R$ with a positively charged nitrogen atom rather than as $\mu_{2}$-carbyne with a $C-N\left(R^{\prime}\right) R$ single bond.

The ${ }^{13} \mathrm{C}$ NMR spectrum of cis-[ $\left.\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$ solution) shows resonances at $112.1,91.6,91.7$, and 12.45 ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$ due to the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$ ligand, at 205.4 ppm due to the $t$ - CO ligands, and at 308.1 and 54.7 ppm due to the $\mu-\mathrm{CNMe}_{2}$ groups. The spectrum of $c i s-\left[\mathrm{Fe}_{2}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]\left(\mathrm{CDCl}_{3}\right.$ solution) shows resonances at 315.7 and $55.5\left(\mu-\mathrm{CNMe}_{2}\right)$, 255.4 ( $\mu-\mathrm{CO}$ ), 207.6 ( $t-\mathrm{CO}$ ) and $90.1 \mathrm{ppm}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. Very weak resonances at 91.5 and 56.2 ppm are due the trans isomer. The spectrum of $\operatorname{cis}-\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] \mathrm{I}\left(\mathrm{CDCl}_{3}\right.$ solution) shows resonances at $322.3,54.5$ and $54.4\left(\mu-\mathrm{CNMc}_{2}\right), 262.2(\mu-\mathrm{CO}), 210.3$ ( $t$-CO), 154.2 and 31.4 ( $t$-CNMe) and 88.7 and $88.3 \mathrm{ppm}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right.$ ).

The ${ }^{13} \mathrm{C}$ chemical shifts of the $\mu-\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{R}$ ligands in [III] ${ }^{+},[\mathrm{IV}]^{+}$and $[\mathrm{V}]^{2+}$ cations compare with e.g. those of ca. 317 ppm in $\left[\mathrm{Fe}_{2}(\mathrm{CNEt})_{6}(\mu\right.$ - CNEt$)\{\mu-$ $\left.\mathrm{CN}\left(\mathrm{R}^{\prime}\right) \mathrm{Et}_{2}\right]^{2+}$ salts [12] ( $\left.\mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{Et}\right)$, and 312 ppm in $\left[\mathrm{W}_{2}\left(\eta^{2}-\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}(\mu-\right.$ $\left.\left.\mathrm{CNEt}_{2}\right)\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)\left(\mu-\mathrm{S}_{2} \mathrm{SnR}_{2}\right)\right]\left\{\mathrm{R}=\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}[13]$.

The structures of cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right] B \mathrm{Ch}_{4}$ and cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$. Both cations have structures (Figs. 1 and 2) similar to that of $c i s-\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right]^{+}$ with a cis geometry [1]. In the $\left[\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right]^{+}$ cation, bond lengths correlate with the bonding abilities of the various ligands. Thus, the $\mathrm{Fe}-\mathrm{C}$ distances to the $\mu$-CNMe ${ }_{2}$ ligand ( $1.876,1.830 \AA$ ) are much shorter than those to $\mu-\mathrm{CO}(1.967,1.909 \AA)$, which is consistent with the stronger $\pi$-acceptor ability of $\mu-\mathrm{CNMe}_{2}{ }^{+}$as compared with $\mu$-CO. Furthermore, a terminal CO group is stronger $\pi$-acceptor than a terminal CNMe , and so $\mathrm{Fe}(2)-\mathrm{CO}$ $(1.749 \AA)$ is much shorter than $\mathrm{Fe}(1)-\mathrm{CNMe}(1.830 \AA)$ with a compensating secondary effect that $\pi$-bonding between the bridging ligands and $\mathrm{Fe}(1)$ is increased over their $\pi$-bonding to $\mathrm{Fe}(2)$. Consequently, $\mathrm{Fe}(1)-\mathrm{C} \mu$ distances are slightly shorter than $\mathrm{Fe}(2)-\mathrm{C} \mu$.

As the two terminal ligands in the $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2}\right]^{2+}$ cation are identical, all four $\mathrm{Fe}-\mathrm{C}$ distances to the $\mu-\mathrm{C}=\mathrm{NMe}_{2}$ ligands are comparable ( $1.879-1.893 \AA$ ). Their mean $(1.886 \AA$ ) is somewhat longer than the 1.830 and $1.876 \AA$ (mean $1.853 \AA$ ) found in cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\right.$ $\left.\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right]^{+}$, which may be attributed to the presence of two very powerful $\pi$-acceptor $\mathrm{CNMe}_{2}$ ligands competing for the available back-bonding.

The coordination about N in the $\mathrm{CNMe}_{2}$ ligands is planar with short $\mathrm{C}=\mathrm{N}$ distances of $1.289-1.303 \AA\left(c f . \mathrm{N}-\mathrm{CH}_{3}=1.459-1.497 \AA\right.$ ), consistent with a multiple bond and the very high barrier to rotation about it. The bond is somewhat longer than that found in imines ( $1.28 \AA$ ) [14].

The $\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)$ and $\mathrm{Fe}_{2}(\mu-\mathrm{CO})$ moieties in both cations are planar. The dihedral angle between the two bridging moieties is $154.8^{\circ}$ in cis- $\left[\mathrm{Fe}_{2}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})(\mathrm{CNMe})(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right]^{+}$which is comparable with the $154^{\circ}$ found in cis-[ $\left.\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{CNMe}_{2}\right)\right]^{+} \quad[1]$. In cis-[Fe $2(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{CNMe}_{2}\right)_{2}\right]^{2+}$ it is smaller at $149.5^{\circ}$ and both are smaller than $161^{\circ}$ in cis- $\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})\left(\mathrm{CN}^{\mathrm{i}} \mathrm{Pr}\right)(\mu-\mathrm{CO})\left(\mu-\mathrm{CN}{ }^{\mathrm{i}} \mathrm{Pr}\right)\right.$ [4] and $164^{\circ}$ in cis-$\left[\mathrm{Fe}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})_{2}\right]$ [15]. It appears that the dihedral angle between the two $\mathrm{Fe}_{2}(\mu-\mathrm{L})$ planes decreases as $\mu-\mathrm{CO}$ or CNR ligands are replaced by $\mu$ $\mathrm{C}=\mathrm{NMe}_{2}$.

## Acknowledgments

We thank Irish Industrial Gases for a grant to M.G. Cox, and the Federation of Irish Chemical Industries for a grant to C. Dowling.

## References

1 S. Willis, A.R. Manning and F.S. Stephens, J. Chem. Soc., Dalton Trans., (1980) 186.
2 J.A.S. Howell and A.J. Rowan, J. Chem. Soc., Dalton Trans., (1980) 503; E. Singleton and H.E. Oosthuizen, Adv. Organomet. Chem., 22 (1983) 209 and references therein.
3 J. Bellerby, M.J. Boylan, M. Ennis and A.R. Manning, J. Chem. Soc., Dalton Trans., (1978) 1185.
4 M. Ennis, R. Kumar, A.R. Manning, J.A.S. Howell, P. Mathur, A.J. Rowan and F.S. Stephens, J. Chem. Soc., Dalton Trans., (1981) 1251.
5 G.M. Sheldrick, shelx86, a computer program for crystal structure determination, University of Gottingen, 1986.

6 G.M. Sheldrick, shelx76, a computer program for crystal structure determination, University of Cambridge, 1976.
7 D.T. Cromer and J.B. Mann, Acta Crystallogr., Sect. A, 24 (1968) 321.
8 R.F. Stewart, E.R. Davidson and W.T. Simpson, J. Chem. Phys., 42 (1965) 3175.
9 D.T. Cromer and D.J. Liberman, J. Chem. Phys., 53 (1970) 1891.
10 C.K. Johnson, ortep, Oak Ridge Natl. Lab. (Rep) ORNL (US), 1965-3794, revised 1971.
11 S. Willis, A.R. Manning and F.S. Stephens, J. Chem. Soc., Dalton Trans., (1979) 23.
12 J.M. Bassett, G.K. Barber, M. Green, J.A.K. Howard, F.G.A. Stone and W.C. Wolsey, J. Chem. Soc., Dalton Trans., (1981) 219.
13 P.B. Hitchcock, M.F. Lappert and M.J. McGeary, Organometallics, 9 (1990) 2645.
14 J. Marsh, Advanced Organic Chemistry, John Wiley and Sons, New York, 3rd edn., p. 19.
15 R.F. Bryan, P.T. Greene, M.J. Newlands and D.S. Field, J. Chem. Soc. (A), (1970) 3068.


[^0]:    Correspondence to: Professor A.R. Manning.

[^1]:    ${ }^{a}$ Found (calculated). ${ }^{b} \mathrm{BPh}_{4}{ }^{-}$as counteranion. ${ }^{c} \boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$ complex. ${ }^{d} \mathrm{Br}^{-}$as counteranion.
    ${ }^{e} \mathrm{I}^{-}$as counteranion.

[^2]:    ${ }^{a}$ Spectra run as KBr pressed discs unless stated otherwise. Peak positions ( $\mathrm{cm}^{-1}$ ) with relative peak heights in parentheses. $w=$ weak, $m=$ medium, and $s=$ strong. ${ }^{b}$ Spectra run in chloroform solution. ${ }^{c} \mathrm{BPh}_{4}{ }^{-}$as counteranion. ${ }^{d} \eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}$ complex. ${ }^{e} \mathrm{Br}^{-}$as counteranion. ${ }^{f} \mathrm{I}^{-}$as counteranion.

